Michio Kaku Quote

These fields, which govern the interaction of all subatomic particles, are now called Yang-Mills fields. However, the puzzle that has stumped physicists within this century is why the subatomic field equations look so vastly different from the field equations of Einstein-that is, why the nuclear force seems so different from gravity. Some of the greatest minds in physics have tackled this problem, only to fail. Perhaps the reason for their failure is that they were trapped by common sense. Confined to three or four dimensions, the field equations of the subatomic world and gravitation are difficult to unify. The advantage of the hyperspace theory is that the Yang-Mills field, Maxwell's field, and Einstein's field can all be placed comfortably within the hyperspace field. We see that these fields fit together precisely within the hyperspace field like pieces in a jig-saw puzzle. The other advantage of field theory is that it allows us to calculate the precise energies at which we can expect space and time to foem wormholes.

Michio Kaku

These fields, which govern the interaction of all subatomic particles, are now called Yang-Mills fields. However, the puzzle that has stumped physicists within this century is why the subatomic field equations look so vastly different from the field equations of Einstein-that is, why the nuclear force seems so different from gravity. Some of the greatest minds in physics have tackled this problem, only to fail. Perhaps the reason for their failure is that they were trapped by common sense. Confined to three or four dimensions, the field equations of the subatomic world and gravitation are difficult to unify. The advantage of the hyperspace theory is that the Yang-Mills field, Maxwell's field, and Einstein's field can all be placed comfortably within the hyperspace field. We see that these fields fit together precisely within the hyperspace field like pieces in a jig-saw puzzle. The other advantage of field theory is that it allows us to calculate the precise energies at which we can expect space and time to foem wormholes.

Related Quotes

About Michio Kaku

Michio Kaku (Japanese: カク ミチオ, 加來 道雄, ; born January 24, 1947) is an American physicist, science communicator, futurologist, and writer of popular-science. He is a professor of theoretical physics at the City College of New York and the CUNY Graduate Center. Kaku is the author of several books about physics and related topics and has made frequent appearances on radio, television, and film. He is also a regular contributor to his own blog, as well as other popular media outlets. For his efforts to bridge science and science fiction, he is a 2021 Sir Arthur Clarke Lifetime Achievement Awardee.
His books Physics of the Impossible (2008), Physics of the Future (2011), The Future of the Mind (2014), and The God Equation: The Quest for a Theory of Everything (2021) became New York Times best sellers. Kaku has hosted several television specials for the BBC, the Discovery Channel, the History Channel, and the Science Channel.