Mario Livio Quote

To claim that mathematics is purely a human invention and is successful in explaining nature only because of evolution and natural selection ignores some important facts in the nature of mathematics and in the history of theoretical models of the universe. First, while the mathematical rules (e.g., the axioms of geometry or of set theory) are indeed creations of the human mind, once those rules are specified, we lose our freedom. The definition of the Golden Ratio emerged originally from the axioms of Euclidean geometry; the definition of the Fibonacci sequence from the axioms of the theory of numbers. Yet the fact that the ratio of successive Fibonacci numbers converges to the Golden Ratio was imposed on us-humans had not choice in the matter. Therefore, mathematical objects, albeit imaginary, do have real properties. Second, the explanation of the unreasonable power of mathematics cannot be based entirely on evolution in the restricted sense. For example, when Newton proposed his theory of gravitation, the data that he was trying to explain were at best accurate to three significant figures. Yet his mathematical model for the force between any two masses in the universe achieved the incredible precision of better than one part in a million. Hence, that particular model was not forced on Newton by existing measurements of the motions of planets, nor did Newton force a natural phenomenon into a preexisting mathematical pattern. Furthermore, natural selection in the common interpretation of that concept does not quite apply either, because it was not the case that five competing theories were proposed, of which one eventually won. Rather, Newton's was the only game in town!

Mario Livio

To claim that mathematics is purely a human invention and is successful in explaining nature only because of evolution and natural selection ignores some important facts in the nature of mathematics and in the history of theoretical models of the universe. First, while the mathematical rules (e.g., the axioms of geometry or of set theory) are indeed creations of the human mind, once those rules are specified, we lose our freedom. The definition of the Golden Ratio emerged originally from the axioms of Euclidean geometry; the definition of the Fibonacci sequence from the axioms of the theory of numbers. Yet the fact that the ratio of successive Fibonacci numbers converges to the Golden Ratio was imposed on us-humans had not choice in the matter. Therefore, mathematical objects, albeit imaginary, do have real properties. Second, the explanation of the unreasonable power of mathematics cannot be based entirely on evolution in the restricted sense. For example, when Newton proposed his theory of gravitation, the data that he was trying to explain were at best accurate to three significant figures. Yet his mathematical model for the force between any two masses in the universe achieved the incredible precision of better than one part in a million. Hence, that particular model was not forced on Newton by existing measurements of the motions of planets, nor did Newton force a natural phenomenon into a preexisting mathematical pattern. Furthermore, natural selection in the common interpretation of that concept does not quite apply either, because it was not the case that five competing theories were proposed, of which one eventually won. Rather, Newton's was the only game in town!

Related Quotes

About Mario Livio

Mario Livio (born June 19, 1945) is an astrophysicist and an author of works that popularize science and mathematics. For 24 years (1991–2015) he was an astrophysicist at the Space Telescope Science Institute, which operates the Hubble Space Telescope. He has published more than 400 scientific articles on topics including cosmology, supernova explosions, black holes, extrasolar planets, and the emergence of life in the universe.[1] His book on the irrational number phi, The Golden Ratio: The Story of Phi, the World's Most Astonishing Number (2002), won the Peano Prize and the International Pythagoras Prize for popular books on mathematics.