Mario Livio Quote

The biggest stumbling block that has traditionally plagued all the unification endeavors has been the simple fact that on the face of it, general relativity and quantum mechanics really appear to be incomprehensible. Recall that the key concept of quantum theory is the uncertainty principle. When you try to probe positions with an ever-increasing magnification power, the momenta (or speeds) start oscillating violently. Below a certain minuscule length known as the Planck length, the entire tenet of a smooth spacetime is lost. This length (equal to 0.000...4 of an inch, where the 4 is at the thirty-fourth decimal place) determines the scale at which gravity has to be treated quantum mechanically. For smaller scales, space turns into an ever-fluctuating quantum foam. But the very basic premise of general relativity has been the existence of a gently curved spacetime. In other words, the central ideas of general relativity and quantum mechanics clash irreconcilably when it comes to extremely small scales.

Mario Livio

The biggest stumbling block that has traditionally plagued all the unification endeavors has been the simple fact that on the face of it, general relativity and quantum mechanics really appear to be incomprehensible. Recall that the key concept of quantum theory is the uncertainty principle. When you try to probe positions with an ever-increasing magnification power, the momenta (or speeds) start oscillating violently. Below a certain minuscule length known as the Planck length, the entire tenet of a smooth spacetime is lost. This length (equal to 0.000...4 of an inch, where the 4 is at the thirty-fourth decimal place) determines the scale at which gravity has to be treated quantum mechanically. For smaller scales, space turns into an ever-fluctuating quantum foam. But the very basic premise of general relativity has been the existence of a gently curved spacetime. In other words, the central ideas of general relativity and quantum mechanics clash irreconcilably when it comes to extremely small scales.

Related Quotes

About Mario Livio

Mario Livio (born June 19, 1945) is an astrophysicist and an author of works that popularize science and mathematics. For 24 years (1991–2015) he was an astrophysicist at the Space Telescope Science Institute, which operates the Hubble Space Telescope. He has published more than 400 scientific articles on topics including cosmology, supernova explosions, black holes, extrasolar planets, and the emergence of life in the universe.[1] His book on the irrational number phi, The Golden Ratio: The Story of Phi, the World's Most Astonishing Number (2002), won the Peano Prize and the International Pythagoras Prize for popular books on mathematics.