Mario Livio Quote

Gell-Mann and Ne'eman discovered that one such simple Lie group, called special unitary group of degree 3, or SU(3), was particularly well suited for the eightfold way-the family structure the particles were found to obey. The beaty of the SU(3) symmetry was revealed in full glory via its predictive power. Gell-Mann and Ne'eman showed that if the theory were to hold true, a previously unknown tenth member of a particular family of nine particles had to be found. The extensive hunt for the missing particle was conducted in an accelerator experiment in 1964 at Brookhaven National Lab on Long Island. Yuval Ne'eman told me some years later that, upon hearing that half of the data had already been scrutinized without discovering the anticipated particle, he was contemplating leaving physics altogether. Symmetry triumphed at the end-the missing particle (called the omega minus) was found, and it had precisely the properties predicted by the theory.

Mario Livio

Gell-Mann and Ne'eman discovered that one such simple Lie group, called special unitary group of degree 3, or SU(3), was particularly well suited for the eightfold way-the family structure the particles were found to obey. The beaty of the SU(3) symmetry was revealed in full glory via its predictive power. Gell-Mann and Ne'eman showed that if the theory were to hold true, a previously unknown tenth member of a particular family of nine particles had to be found. The extensive hunt for the missing particle was conducted in an accelerator experiment in 1964 at Brookhaven National Lab on Long Island. Yuval Ne'eman told me some years later that, upon hearing that half of the data had already been scrutinized without discovering the anticipated particle, he was contemplating leaving physics altogether. Symmetry triumphed at the end-the missing particle (called the omega minus) was found, and it had precisely the properties predicted by the theory.

Related Quotes

About Mario Livio

Mario Livio (born June 19, 1945) is an astrophysicist and an author of works that popularize science and mathematics. For 24 years (1991–2015) he was an astrophysicist at the Space Telescope Science Institute, which operates the Hubble Space Telescope. He has published more than 400 scientific articles on topics including cosmology, supernova explosions, black holes, extrasolar planets, and the emergence of life in the universe.[1] His book on the irrational number phi, The Golden Ratio: The Story of Phi, the World's Most Astonishing Number (2002), won the Peano Prize and the International Pythagoras Prize for popular books on mathematics.