Roger Penrose Quote

The reason that I have concentrated on non-computability, in my arguments, rather than on complexity, is simply that it is only with the former that I have been able to see how to make the necessary strong statements. It may well be that in the working lives of most mathematicians, non-computability issues play, if anything, only a very small part. But that is not the point at issue. I am trying to show that (mathematical) understanding is something that lies beyond computation, and the Godel (-Turing) argument is one of the few handles that we have on that issue. It is quite probable that our mathematical insights and understandings are often used to achieve things that could in principle also be achieved computationally-but where blind computation without much insight may turn out to be so inefficient that it is unworkable (cf. 3.26). However, these matters are much more difficult to address than the non-computability issue.

Roger Penrose

The reason that I have concentrated on non-computability, in my arguments, rather than on complexity, is simply that it is only with the former that I have been able to see how to make the necessary strong statements. It may well be that in the working lives of most mathematicians, non-computability issues play, if anything, only a very small part. But that is not the point at issue. I am trying to show that (mathematical) understanding is something that lies beyond computation, and the Godel (-Turing) argument is one of the few handles that we have on that issue. It is quite probable that our mathematical insights and understandings are often used to achieve things that could in principle also be achieved computationally-but where blind computation without much insight may turn out to be so inefficient that it is unworkable (cf. 3.26). However, these matters are much more difficult to address than the non-computability issue.

Related Quotes

About Roger Penrose

Sir Roger Penrose (born 8 August 1931) is a British mathematician, mathematical physicist, philosopher of science and Nobel Laureate in Physics. He is Emeritus Rouse Ball Professor of Mathematics in the University of Oxford, an emeritus fellow of Wadham College, Oxford, and an honorary fellow of St John's College, Cambridge, and University College London.
Penrose has contributed to the mathematical physics of general relativity and cosmology. He has received several prizes and awards, including the 1988 Wolf Prize in Physics, which he shared with Stephen Hawking for the Penrose–Hawking singularity theorems, and the 2020 Nobel Prize in Physics "for the discovery that black hole formation is a robust prediction of the general theory of relativity".