Neil deGrasse Tyson Quote

In the mid-twentieth century, the subfield of cosmology—not to be confused with cosmetology—didn’t have much data. And where data are sparse, competing ideas abound that are clever and wishful. The existence of the CMB was predicted by the Russian-born American physicist George Gamow and colleagues during the 1940s. The foundation of these ideas came from the 1927 work of the Belgian physicist and priest Georges Lemaître, who is generally recognized as the father of big bang cosmology. But it was American physicists Ralph Alpher and Robert Herman who, in 1948, first estimated what the temperature of the cosmic background ought to be. They based their calculations on three pillars: 1) Einstein’s 1916 general theory of relativity; 2) Edwin Hubble’s 1929 discovery that the universe is expanding; and 3) atomic physics developed in laboratories before and during the Manhattan Project that built the atomic bombs of World War II. Herman and Alpher calculated and proposed a temperature of 5 degrees Kelvin for the universe. Well, that’s just plain wrong. The precisely measured temperature of these microwaves is 2.725 degrees, sometimes written as simply 2.7 degrees, and if you’re numerically lazy, nobody will fault you for rounding the temperature of the universe to 3 degrees. Let’s pause for a moment. Herman and Alpher used atomic physics freshly gleaned in a lab, and applied it to hypothesized conditions in the early universe. From this, they extrapolated billions of years forward, calculating what temperature the universe should be today. That their prediction even remotely approximated the right answer is a stunning triumph of human insight.

Neil deGrasse Tyson

In the mid-twentieth century, the subfield of cosmology—not to be confused with cosmetology—didn’t have much data. And where data are sparse, competing ideas abound that are clever and wishful. The existence of the CMB was predicted by the Russian-born American physicist George Gamow and colleagues during the 1940s. The foundation of these ideas came from the 1927 work of the Belgian physicist and priest Georges Lemaître, who is generally recognized as the father of big bang cosmology. But it was American physicists Ralph Alpher and Robert Herman who, in 1948, first estimated what the temperature of the cosmic background ought to be. They based their calculations on three pillars: 1) Einstein’s 1916 general theory of relativity; 2) Edwin Hubble’s 1929 discovery that the universe is expanding; and 3) atomic physics developed in laboratories before and during the Manhattan Project that built the atomic bombs of World War II. Herman and Alpher calculated and proposed a temperature of 5 degrees Kelvin for the universe. Well, that’s just plain wrong. The precisely measured temperature of these microwaves is 2.725 degrees, sometimes written as simply 2.7 degrees, and if you’re numerically lazy, nobody will fault you for rounding the temperature of the universe to 3 degrees. Let’s pause for a moment. Herman and Alpher used atomic physics freshly gleaned in a lab, and applied it to hypothesized conditions in the early universe. From this, they extrapolated billions of years forward, calculating what temperature the universe should be today. That their prediction even remotely approximated the right answer is a stunning triumph of human insight.

Related Quotes

About Neil deGrasse Tyson

Neil deGrasse Tyson (US: də-GRASS or UK: də-GRAHSS; born October 5, 1958) is an American astrophysicist, author, and science communicator.
Tyson studied at Harvard University, the University of Texas at Austin, and Columbia University. From 1991 to 1994, he was a postdoctoral research associate at Princeton University. In 1994, he joined the Hayden Planetarium as a staff scientist and the Princeton faculty as a visiting research scientist and lecturer. In 1996, he became director of the planetarium and oversaw its $210 million reconstruction project, which was completed in 2000. Since 1996, he has been the director of the Hayden Planetarium at the Rose Center for Earth and Space in New York City. The center is part of the American Museum of Natural History, where Tyson founded the Department of Astrophysics in 1997 and has been a research associate in the department since 2003.
From 1995 to 2005, Tyson wrote monthly essays in the "Universe" column for Natural History magazine, some of which were later published in his books Death by Black Hole (2007) and Astrophysics for People in a Hurry (2017). During the same period, he wrote a monthly column in StarDate magazine, answering questions about the universe under the pen name "Merlin". Material from the column appeared in his books Merlin's Tour of the Universe (1998) and Just Visiting This Planet (1998). Tyson served on a 2001 government commission on the future of the U.S. aerospace industry and on the 2004 Moon, Mars and Beyond commission. He was awarded the NASA Distinguished Public Service Medal in the same year. From 2006 to 2011, he hosted the television show NOVA ScienceNow on PBS. Since 2009, Tyson has hosted the weekly podcast StarTalk. A spin-off, also called StarTalk, began airing on National Geographic in 2015. In 2014, he hosted the television series Cosmos: A Spacetime Odyssey, a successor to Carl Sagan's 1980 series Cosmos: A Personal Voyage. The U.S. National Academy of Sciences awarded Tyson the Public Welfare Medal in 2015 for his "extraordinary role in exciting the public about the wonders of science".