Mario Livio Quote

The properties that define a group are:1. Closure. The offspring of any two members combined by the operation must itself be a member. In the group of integers, the sum of any two integers is also an integer (e.g., 3 + 5 = 8).2. Associativity. The operation must be associative-when combining (by the operation) three ordered members, you may combine any two of them first, and the result is the same, unaffected by the way they are bracketed. Addition, for instance, is associative: (5 + 7) + 13 = 25 and 5 + (7 + 13) = 25, where the parentheses, the punctuation marks of mathematics, indicate which pair you add first.3. Identity element. The group has to contain an identity element such that when combined with any member, it leaves the member unchanged. In the group of integers, the identity element is the number zero. For example, 0 + 3 = 3 + 0 = 3.4. Inverse. For every member in the group there must exist an inverse. When a member is combined with its inverse, it gives the identity element. For the integers, the inverse of any number is the number of the same absolute value, but with the opposite sign: e.g., the inverse of 4 is -4 and the inverse of -4 is 4; 4 + (-4) = 0 and (-4) + 4 = 0.The fact that this simple definition can lead to a theory that embraces and unifies all the symmetries of our world continues to amaze even mathematicians.

Mario Livio

The properties that define a group are:1. Closure. The offspring of any two members combined by the operation must itself be a member. In the group of integers, the sum of any two integers is also an integer (e.g., 3 + 5 = 8).2. Associativity. The operation must be associative-when combining (by the operation) three ordered members, you may combine any two of them first, and the result is the same, unaffected by the way they are bracketed. Addition, for instance, is associative: (5 + 7) + 13 = 25 and 5 + (7 + 13) = 25, where the parentheses, the punctuation marks of mathematics, indicate which pair you add first.3. Identity element. The group has to contain an identity element such that when combined with any member, it leaves the member unchanged. In the group of integers, the identity element is the number zero. For example, 0 + 3 = 3 + 0 = 3.4. Inverse. For every member in the group there must exist an inverse. When a member is combined with its inverse, it gives the identity element. For the integers, the inverse of any number is the number of the same absolute value, but with the opposite sign: e.g., the inverse of 4 is -4 and the inverse of -4 is 4; 4 + (-4) = 0 and (-4) + 4 = 0.The fact that this simple definition can lead to a theory that embraces and unifies all the symmetries of our world continues to amaze even mathematicians.

Related Quotes

About Mario Livio

Mario Livio (born June 19, 1945) is an astrophysicist and an author of works that popularize science and mathematics. For 24 years (1991–2015) he was an astrophysicist at the Space Telescope Science Institute, which operates the Hubble Space Telescope. He has published more than 400 scientific articles on topics including cosmology, supernova explosions, black holes, extrasolar planets, and the emergence of life in the universe.[1] His book on the irrational number phi, The Golden Ratio: The Story of Phi, the World's Most Astonishing Number (2002), won the Peano Prize and the International Pythagoras Prize for popular books on mathematics.