Roger Penrose Quote

Specifically, the awareness that I claim is demonstrably non-computational is our understanding of the properties of natural numbers 0,1,2,3,4,....(One might even say that our concept of a natural number is, in a sense, a form of non-geometric 'visualization'.) We shall see in 2.5, by a readily accessible form of Godel's theorem (cf. response to query Q16), that this understanding is something that cannot be simulated computationally. From time to time one hears that some computer system has been 'trained' so as to 'understand' the concept of natural numbers. However, this cannot be true, as we shall see. It is our awareness of what a 'number' can actually mean that enables us to latch on to the correct concept. When we have this correct concept, we can-at least in principle-provide the correct answers to families of questions about numbers that are put to us, when no finite set of rules can do this. With only rules and no direct awareness, a computer-controlled robot (like Deep Thought) would be necessarily limited in ways in which we are not limited ourselves-although if we give the robot clever enough rules for its behaviour it may perform prodigious feats, some of which lie far beyond unaided human capabilities in specific narrowly enough defined areas, and it might be able to fool us, for some while, into thinking that it also possesses awareness.

Roger Penrose

Specifically, the awareness that I claim is demonstrably non-computational is our understanding of the properties of natural numbers 0,1,2,3,4,....(One might even say that our concept of a natural number is, in a sense, a form of non-geometric 'visualization'.) We shall see in 2.5, by a readily accessible form of Godel's theorem (cf. response to query Q16), that this understanding is something that cannot be simulated computationally. From time to time one hears that some computer system has been 'trained' so as to 'understand' the concept of natural numbers. However, this cannot be true, as we shall see. It is our awareness of what a 'number' can actually mean that enables us to latch on to the correct concept. When we have this correct concept, we can-at least in principle-provide the correct answers to families of questions about numbers that are put to us, when no finite set of rules can do this. With only rules and no direct awareness, a computer-controlled robot (like Deep Thought) would be necessarily limited in ways in which we are not limited ourselves-although if we give the robot clever enough rules for its behaviour it may perform prodigious feats, some of which lie far beyond unaided human capabilities in specific narrowly enough defined areas, and it might be able to fool us, for some while, into thinking that it also possesses awareness.

Related Quotes

About Roger Penrose

Sir Roger Penrose (born 8 August 1931) is a British mathematician, mathematical physicist, philosopher of science and Nobel Laureate in Physics. He is Emeritus Rouse Ball Professor of Mathematics in the University of Oxford, an emeritus fellow of Wadham College, Oxford, and an honorary fellow of St John's College, Cambridge, and University College London.
Penrose has contributed to the mathematical physics of general relativity and cosmology. He has received several prizes and awards, including the 1988 Wolf Prize in Physics, which he shared with Stephen Hawking for the Penrose–Hawking singularity theorems, and the 2020 Nobel Prize in Physics "for the discovery that black hole formation is a robust prediction of the general theory of relativity".