Andrew John Wiles Quote

Some mathematics problems look simple, and you try them for a year or so, and then you try them for a hundred years, and it turns out that they're extremely hard to solve. There's no reason why these problems shouldn't be easy, and yet they turn out to be extremely intricate. [Fermat's] Last Theorem is the most beautiful example of this.

Andrew John Wiles

Some mathematics problems look simple, and you try them for a year or so, and then you try them for a hundred years, and it turns out that they're extremely hard to solve. There's no reason why these problems shouldn't be easy, and yet they turn out to be extremely intricate. [Fermat's] Last Theorem is the most beautiful example of this.

Related Quotes

About Andrew John Wiles

Sir Andrew John Wiles (born 11 April 1953) is an English mathematician and a Royal Society Research Professor at the University of Oxford, specialising in number theory. He is best known for proving Fermat's Last Theorem, for which he was awarded the 2016 Abel Prize and the 2017 Copley Medal and for which he was appointed a Knight Commander of the Order of the British Empire in 2000. In 2018, Wiles was appointed the first Regius Professor of Mathematics at Oxford. Wiles is also a 1997 MacArthur Fellow.
Wiles was born in Cambridge to theologian Maurice Frank Wiles and his wife Patricia. While spending much of his childhood in Nigeria, Wiles developed an interest in mathematics and in Fermat’s Last Theorem in particular. After moving to Oxford and graduating from there in 1974, he worked on unifying Galois representations, elliptic curves and modular forms, starting with Barry Mazur’s generalizations of Iwasawa theory. In the early 1980s, Wiles moved to Princeton University from Cambridge and worked on expanding out and applying Hilbert modular forms. In 1986, upon reading Ken Ribet’s seminal work on Fermat’s Last Theorem, Wiles set out to prove the modularity theorem for semistable elliptic curves, which implied Fermat’s Last Theorem. By 1993, he had been able to prove Fermat’s Last Theorem, though a flaw was discovered. After an insight on 19 September 1994, Wiles and his student Richard Taylor were able to circumvent the flaw, and published the results in 1995, to widespread acclaim.
In proving Fermat’s Last Theorem, Wiles developed new tools for mathematicians to begin unifying disparate ideas and theorems. His former student Taylor along with three other mathematicians were able to prove the full modularity theorem by 2000, using Wiles’ work. Upon receiving the Abel Prize in 2016, Wiles reflected on his legacy, expressing his belief that he did not just prove Fermat’s Last Theorem, but pushed the whole of mathematics as a field towards the Langlands program of unifying number theory.